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Abstract
A reference equilibrium for the US National Compact Stellarator Experiment is predicted to be sufficiently close to
quasi-symmetry to allow the plasma to flow in the toroidal direction with little viscous damping, yet to have
sufficiently large deviations from quasi-symmetry that nonambipolarity significantly affects the physics of the
shielding of resonant magnetic perturbations by plasma flow. The unperturbed velocity profile is modified by
the presence of an ambipolar potential, which produces a broad velocity profile. In the presence of a resonant
magnetic field perturbation, nonambipolar transport produces a radial current, and the resulting j × B force
resists departures from the ambipolar velocity and enhances the shielding.

PACS numbers: 52.55.Hc, 52.35.Vd, 52.30.-q

1. Introduction

Resonant magnetic perturbations pose a threat to flux surface
integrity in toroidal magnetic confinement configurations. The
width of the island produced by a resonant perturbation scales
as the square root of the perturbation amplitude, so that even a
relatively small resonant magnetic perturbation at a rational
surface can produce a substantial magnetic island. There
has therefore been great interest in the role that plasma flow
can play in shielding out resonant perturbations at rational
surfaces [1, 2]. This effect is believed to play a major
role in reducing the vulnerability of present day tokamaks
to resonant field errors, and an understanding of the effect
will be important for setting field-error tolerances for ITER.
The flow-shielding effect has been studied systematically in
tokamak experiments where externally imposed magnetic field
perturbations have been varied and their penetration threshold
determined [3–5].

This paper considers the flow-shielding effect in a quasi-
axisymmetric stellarator. Quasi-axisymmetric stellarator
configurations have drift trajectories that look like those in
an axisymmetric configuration, and they allow undamped
toroidal flow [6]. In the limit of perfect quasi-axisymmetry,
the flow-shielding effect is predicted to look like that in

a tokamak having the same parameters. However, if we
allow for the presence of non-quasi-symmetric ripple in the
field, the radial transport is no longer intrinsically ambipolar,
as it is in axisymmetric configurations. This brings in an
additional radial current which modifies the physics of the
flow shielding. The radial current produces a j × B torque
that resists externally induced changes in the flow velocity and
enhances the effectiveness of the shielding. It also modifies the
unperturbed rotation velocity of the plasma in the absence of a
resonant perturbation. Our modelling of these effects employs
a one-dimensional transport code [7], as well as the DEGAS
code for estimating the momentum transfer rate to neutrals,
and the PIES code [8] for calculating the magnitude of the
resonant perturbation.

The work described in this paper focuses on a particularly
interesting regime of intermediate ripple amplitude, where
the deviations from quasi-symmetry are sufficiently large to
substantially modify the flow-shielding effect, but where
the configuration is nonetheless sufficiently close to quasi-
symmetry that the flow damping in the toroidal direction
can be considered to be negligibly small compared to that
in the poloidal direction. A reference equilibrium for the
US National Compact Stellarator Experiment (NCSX) is
calculated to be in this intermediate regime, and the numerical
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Resonant magnetic perturbations in a stellarator

calculations presented in this paper focus on that NCSX
reference equilibrium.

The three-dimensional NCSX device will have great
flexibility for controlling resonant magnetic field components
and investigating their interaction with plasma flow.
Comparison of theoretical predictions with experimental
observations on NCSX, and with tokamak experiments having
comparable plasma parameters, will contribute towards the
goal of being able to reliably predict field-error penetration
thresholds.

The NCSX, under construction at Princeton, is a quasi-
axisymmetric stellarator designed to combine favourable
features of advanced tokamaks with those of drift-optimized
stellarators [9–11]. The NCSX configuration has been
designed to have nested flux surfaces, incorporating several
layers of defense against excessive magnetic island formation,
but flow shielding could nonetheless have an impact on
flexibility and on vulnerability to field errors. The choice
of the NCSX fixed boundary configuration was driven, in
part, by calculations with the PIES code indicating that it has
intrinsically nested flux surfaces [9, 12]. For the design of
the NCSX coils to produce this configuration, an optimization
code built around the PIES three-dimensional equilibrium code
was used to reduce the magnitude of resonant components of
the magnetic field while preserving desired engineering and
physics properties [12–15]. A series of calculations with the
PIES code showed that this coil design process, which targeted
the resonant components of the magnetic field in the NCSX
reference equilibrium, also greatly reduced the island widths
for a range of equilibria with varying profiles, betas and coil
currents [12, 16]. The NCSX design also incorporates two sets
of trim coils to provide further control over resonant magnetic
fields. NCSX has also been designed to have a monotonically
increasing ι(=1/q) profile to give neoclassical suppression
of magnetic islands, and this is expected to further protect
against magnetic island formation. Nevertheless, to the extent
that the plasma flow shields out residual resonant magnetic
field components at rational surfaces, it will further improve
the flexibility of the NCSX device to generate a range of
configurations with nested flux surfaces, and it will further
reduce the vulnerability of the NCSX device to field errors
produced by finite tolerances in the construction and placement
of the magnetic field coils.

Section 2 of this paper will provide an introduction
to the physics issues in the shielding of resonant magnetic
perturbations by plasma flow in a quasi-axisymmetric
stellarator. The remaining sections will discuss the details.
The calculations described in this paper have been done for
a reference β = 4% NCSX equilibrium whose properties
are extensively discussed in a special volume of the journal
Fusion Science and Technology devoted to the NCSX physics
design [17]. Figure 1 shows the shape of the plasma boundary
at several poloidal cross sections separated by �φ = π/9.
(NCSX is a three-period stellarator.) Figure 2 shows the
ι = 1/q (rotational transform) profile plotted as a function
of the toroidal flux normalized to its value at the plasma
boundary. (Note that some authors use iota-bar rather than
iota to denote 1/q.)

Figure 1. Plasma boundary shape of reference quasi-axisymmetric
configuration at poloidal cross sections separated by �φ = π/9.

Figure 2. Plot of rotational transform profile, ι = 1/q, as a function
of toroidal flux normalized to its value at the plasma boundary.

2. Shielding of rational surfaces by plasma flow in a
quasi-axisymmetric stellarator

In an ideal plasma, reconnection is prohibited and the flux
surfaces cannot be broken. A surface current is induced
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at the rational surface that shields out resonant magnetic
perturbations. In the absence of plasma flow, the presence
of even a small resistivity causes the surface current to decay,
and allows the resonant field to penetrate the rational surface.
If flow is present at the rational surface, a localized current
continues to be induced which partially shields out the resonant
component of the field. (The physics of this is perhaps seen
more clearly in a reference frame moving with the plasma,
where the resonant perturbation is time dependent.) If the flow
is sufficiently strong, only a very small fraction of the resonant
field penetrates the rational surface.

The induced current at the rational surface interacts with
the remnant of the resonant field there to produce a j × B
torque. This electromagnetic torque opposes the motion of the
plasma at the rational surface, and acts to slow the flow. When
the resonant perturbation amplitude exceeds a threshold value,
the torque is large enough to locally suppress the plasma
flow, allowing the resonant perturbation to fully penetrate the
rational surface.

Consider the case where a small perturbation of the
magnetic field is turned on in a stellarator plasma that initially
has nested flux surfaces. Express the unperturbed magnetic
field in magnetic coordinates: B0 = ∇�0 ×∇θ + ι∇�0 ×∇ϕ,
where B0 is the unperturbed field, and �0 is an unperturbed flux
function satisfying B0·∇�0 = 0. Write B = B0 + δB, � =
�0 + δ�. To first order B0·∇(δ�) = −δB·∇�0. In magnetic
coordinates this can be expressed as

B0·∇ϕ

(
∂δ�

∂ϕ
+ ι

∂δ�

∂θ

)
= −δB·∇�0. (1)

Dividing by B0·∇ϕ and Fourier transforming, we get

(n − ιm)δ�nm = −
(

δB·∇�0

B0·∇ϕ

)
nm

. (2)

The nonresonant Fourier components just introduce small
ripples in the flux surfaces. If a resonant Fourier component
is present (one satisfying n = ιm), the flux surface is broken
and a magnetic island is produced.

The response of a rotating plasma at the rational surface
to an externally imposed resonant perturbation has been
calculated theoretically for a variety of regimes and under a
variety of assumptions [1, 18–23]. These calculations have
been done for either slab or cylindrical geometry. Because
the local induced current is determined by the layer physics,
these calculations are relevant for shaped tokamaks and for
stellarators.

The electromagnetic torque exerted on the rational surface
by the resonant perturbation is opposed by a viscous torque
produced by the plasma flow external to the surface. (In a
nonaxisymetric configuration there is in general also a direct
j × B torque exerted on the boundary layer at the rational
surface by the nonambipolar radial current. This contribution
to the torque is small for the cases we consider in this
paper.) The threshold for resonant field penetration is
determined by the relative magnitude of the electromagnetic
torque and the viscous torque. While the physics determining
the magnitude of the electromagnetic torque is the same
in tokamaks and stellarators, the physics determining the
viscous torque is modified in a stellarator by the radial

current produced by the nonambipolar transport. In the
absence of a resonant perturbation, this radial current produces
an ambipolar potential and a corresponding contribution to
the plasma flow. When a resonant perturbation is imposed,
the electromagnetic torque causes the flow velocity to deviate
locally from its ambipolar value. The radial current arising
from the resulting nonambipolar transport produces a j × B
torque that opposes the electromagnetic torque and enhances
the effectiveness of the shielding.

Sections 3 and 4 discuss the calculation of the viscous
torque for NCSX. Section 3 discusses the ambipolar plasma
flow in the absence of a resonant magnetic perturbation.
Section 4 discusses the viscous force that opposes the
electromagnetic force produced by a resonant perturbation.
Section 5 discusses the resulting penetration threshold for
resonant magnetic perturbations.

3. Unperturbed ambipolar plasma flow in NCSX

In this section we calculate the plasma flow velocity profile
in the absence of a resonant perturbation for our reference
β = 4% NCSX equilibrium. We first calculate the ambipolar
potential and corresponding flow neglecting the effect of
radial momentum diffusion. We then bring in the effect of
radial momentum diffusion (perpendicular viscosity) through
the momentum diffusion equation. Determination of the
appropriate boundary conditions for the momentum diffusion
equation requires a consideration of momentum loss at the
plasma boundary, and for this purpose we calculate the
interaction with neutrals and with the Scrape-Off Layer (SOL).
Our analysis does not include a momentum source term due
to neutral beams. It is planned to heat NCSX with balanced
beams so as to minimize the associated current drive in the
plasma core.

3.1. Ambipolar potential and corresponding plasma flow
neglecting radial momentum diffusion

We solve for the temperature profiles and self-consistent
ambipolar potential using a model [7] which consists of a set of
one-dimensional transport equations in cylindrical geometry,
with an assumed density profile. The thermal diffusivities
are calculated as the sum of three contributions: neoclassical
ripple transport, neoclassical axisymmetric transport and an
anomalous transport model with an adjustable coefficient. The
neoclassical ripple transport is calculated from a single helicity
analytical neoclassical ripple model [24–26] using an effective
helical ripple obtained from the full three-dimensional
numerical equilibrium. In particular, the calculation of the
effective ripple in the 1/ν regime uses a code developed by
Nemov et al [27]. The neoclassical axisymmetric transport
is given by the Chang–Hinton formulation for a circular
plasma cross section [28], using the same cross sectional
area as the toroidal average of NCSX, with a correction
factor incorporated to give agreement with an axisymmetric
NCLASS [29] calculation. Unlike many tokamaks, stellarators
often have experimentally determined thermal diffusivities that
are approximately radially constant, and we adopt this simple
model for the anomalous transport, with the anomalous
diffusivity adjusted to match a target thermal 〈β〉 or H factor.
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Figure 3. Calculated electron and ion temperature profiles for the
reference NCSX equilibrium.

Figure 4. Electron density and ambipolar radial electric field for the
reference NCSX equilibrium.

The transport model is described in more detail in [7].
The calculated electron and ion temperature profiles for our
reference NCSX equilibrium are plotted in figure 3. The
assume density profile is shown in figure 4. It is important
to note that the thermal diffusivities are dominated by the
contributions from anomalous and axisymmetric neoclassical
transport, while only the helical neoclassical transport is
expected to contribute to the nonambipolar radial transport.
By varying the effective helical ripple it should be possible to
change the radial currents while not significantly affecting the
thermal diffusivities [7].

In the absence of a radial electric field, the ions are lost
more rapidly than the electrons, giving a net outward current.
The radial electric field, Er, builds up until it is sufficiently

large to equalize the radial flux of the ions and electrons, jr = 0.
The calculated self-consistent ambipolar radial electric field is
plotted in figure 4.

In steady state, the ion momentum equation determines
the component of the flow perpendicular to the magnetic field:
vi⊥ = E × B/B2 − (1/ne)∇pi × B/B2. There is in addition
a component of the flow velocity aligned with the magnetic
field, v‖, and its magnitude is determined by the relative flow
damping in the poloidal and toroidal directions. As in a
tokamak, the damping in the poloidal direction is strong. The
configuration is sufficiently close to quasi-axisymmetry that
the flow damping in the toroidal direction is small. This implies
that the flow velocity in the poloidal direction can be taken to
be zero to a good approximation. In cylindrical geometry, we
write v = v⊥r̂ × b̂ + v‖b̂, where b̂ = B/B, B = Bpθ̂ + Btφ̂.
Imposing the constraint vθ = 0, we get v‖ = (Bt/Bp)v⊥.

NCSX has a strong axisymmetric component of shaping,
with an ellipticity of 1.8, and it has an aspect ratio of 4.3.
We can ask what effect this geometry has on the calculation
of the velocity driven by the ambipolar potential, whether
there should be associated correction factors. This question
can be approached by considering the geometric effects
on an axisymmetric field. Starting from the usual mixed
representation for an axisymmetric field, B = ∇ψ × ∇φ +
F(ψ)∇φ, it is straightforward to obtain a corresponding
expression for the perpendicular component of the velocity,
and to determine the parallel component of the velocity from
the condition that vp = 0. We find |v⊥|/|vφ| = |∇ψ |/F (ψ) =
Bp/Bt , and vφ ≈ R(d
/dψ − dpi/dψ), where 
 is the
ambipolar potential. It follows that our conclusions concerning
the magnitude of the toroidal velocity are unaffected by the
shaping.

Our calculation of vφ depends on the fact that the deviation
from quasi-axisymmetry is sufficiently small that the flow
damping in the toroidal direction may be neglected relative
to that in the poloidal direction. A criterion for the degree
of quasi-axisymmetry required may be obtained by solving
the momentum-balance equations in a flux surface [30, 31].
Working in Hamada coordinates, we write the ion flow as
v = vθeθ + vφeφ , with eθ,φ the contravariant basis vectors in
the poloidal and toroidal directions. The steady-state parallel
force balance equation is 0 = 〈B · ∇ · πi〉, with πi the ion
viscosity tensor. In the Pfirsch–Schlüter and plateau regimes,
one has 〈B · ∇ · πi〉 ≈ µθv

θ +µφvφ , and thus vθ/vφ ≈ µφ/µθ .
For a tokamak, axisymmetry implies µφ = 0, and thus vθ = 0.
A criterion for our calculation of eφ ·v for a quasi-axisymmetric
stellarator to be valid is

1 � vθ

vφ
= µφ

µθ

. (3)

In the Pfirsch–Schlüter regime, simple expressions for µθ,φ

have been worked out [30] for model expressions for the
magnetic field strength B. Taking a single helical component
(m,n) with amplitude B0δ, one has B = B0[1 − ε cos(θ) −
δ cos(mθ + nφ)], and

µθ,φ = µ0pi

νii

〈
B · ∇B

B

∂θ,φB

B

〉
≈ µ0piB

2νii
(ιm + n)(m, n)δ2.

Here, µ0 = 4.095, νii is the ion–ion collision frequency, pi is
the ion pressure and ι ≡ q−1 is the rotational transform. Using
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Figure 5. The effective helical ripple for NCSX versus the square
root of the normalized toroidal flux as calculated by the NEO code.

this in equation (3) yields a ripple criterion for the validity
of the analysis:

1 � (n/m)�2

1 + �2
, (4)

where �2 ≡ (m+nq)mδ2/ε2. Figure 5 is a plot of the effective
helical ripple for the NCSX reference configuration. The
dominant contributions to the ripple come from m = 2, n = 1,
and from m = 3, n = 2. The ripple criterion, equation (4), is
adequately satisfied.

3.2. Momentum diffusion and boundary conditions:
interaction with neutrals and with the SOL

The calculation thus far has not taken into account momentum
diffusion. We have taken the poloidal velocity to be zero
because of the strong poloidal damping, and we only need to
consider the toroidal component of the momentum diffusion
equation. We consider the momentum diffusion equation in a
cylinder, where it takes the form:

ρ
dvz

dt
= 1

r

d

dr

(
µρr

dvz

dr

)
+ jrBθ . (5)

Here ρ is the plasma density, vz is the axial velocity,
µ is the (anomalous) momentum diffusivity (µρ is the
coefficient of perpendicular viscosity) and jr is the current
produced by nonambipolar radial transport. In tokamak
experiments, the anomalous momentum diffusivity has been
found to be approximately equal to the anomalous cross-
field thermal diffusion coefficient, and we assume that that
is also the case here. As mentioned above, stellarators
often have experimentally determined thermal diffusivities that
are approximately radially constant, and we adopt the simple
model of taking µ to be radially constant. For our reference
NCSX equilibrium, µ ≈ 1.5 m2 s−1.

Equation (5) differs from the momentum diffusion
equation in a tokamak by the presence of the last term, which
is nonzero when the flow velocity on a flux surface is forced
away from its ambipolar value.

Equation (5) must be supplemented by boundary
conditions at the origin and at the edge. At the origin, regularity
requires dvz/dr = 0. At the plasma edge, the boundary
condition is determined by the interaction with neutrals and
with the SOL, which produce a momentum flow through the
plasma edge equal to −4π2aRµρ dvz/dr , where a is the minor
radius and R is the major radius. The momentum flow is equal
to the total force exerted by the neutrals and SOL, which are
taken to act on a radially narrow region at the plasma edge.
(We will justify this approximation below.)

Near the plasma edge, momentum is transferred to
the neutrals primarily through charge exchange. Ionization
reactions also must be taken into account, because they serve
to impart some of the momentum picked up by the neutrals
back to the ions. To estimate the rate of momentum transfer
to the neutrals we use the DEGAS code to do a Monte Carlo
calculation for a model axisymmetric geometry [32]. We use
the φ = π/6 (bullet-shaped) cross section for this purpose, as
is appropriate for the expected initial placement of a limiter
on NCSX.

The momentum transfer to the neutrals is localized at
the plasma edge, with the average momentum transfer rate
in the zone 0.96 < r/a < 1 calculated to be about seven
times as large as that in the zone 0.92 < r/a < 0.96. The
rate of momentum transfer to the neutrals can be expected
to scale roughly linearly with the plasma velocity. We write
this momentum transfer rate as νnvz, where νn is a coefficient
to be determined. For an edge velocity of 290 km s−1, the
integrated momentum transfer rate is calculated to be about
1.2 N, corresponding to νn = 4 × 10−6 kg s−1. This gives the
boundary condition a dvz(a)/dr = −κvz(a), with κ ≈ 2.

We next estimate the momentum transfer to the SOL.
We consider the case where there is a toroidal rail limiter.
Field lines outside the plasma edge intercept the limiter, with
a connection length of L ≈ πR/ι, where ι ≈ 0.6 is the
rotational transform at the plasma edge. The ion mean free path
is comparable to the connection length. Particles outside the
plasma edge are lost to the limiter in a time τ ≈ L/vti, so that
the momentum loss rate in the SOL is approximately ρvz/τ .
Combining this with momentum diffusion, and adopting
a slab approximation (which is appropriate in the narrow
SOL), we get (d/dr)[µρ(dvz/dr)] = ρvz/τ . The velocity
decays exponentially as a function of r in the SOL, vz(r) =
vz(a) exp(−(r − a)/ l). The density obeys a similar equation,
and it too decays exponentially in the SOL. If the diffusion
coefficients are equal, l ≈ 1.6

√
µτ . Momentum is dissipated

in the SOL at the rate
∫ ∞
a

ρvz/τ ≈ 0.6ρ(a)vz(a)
√

µ/τ . The
momentum transfer rate is again of the form νnvz, with the
SOL contribution to νn estimated to be roughly 0.6ρ(a)

√
µ/τ .

The momentum transfer to the SOL is sensitive to the value
of ρ at the edge. For our assumed density profile ne(a) ≈
1.5 × 1019 m−3, and we calculate κ ≈ 18. For smaller values
of ne(a), the momentum transfer to the SOL is correspondingly
smaller, with the total momentum transfer rate bounded below
by the contribution of the neutrals.

Having determined the boundary conditions, we return
to the solution of equation (5). For this purpose, we must
determine the dependence of jr on vz. The radial current
vanishes when vz has its ambipolar value, corresponding to
the ambipolar value of the electrostatic potential. We adopt
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Figure 6. Calculated ambipolar velocity profiles for three different
levels of momentum dissipation at the plasma edge. The three
curves were obtained with κ = 0, κ ≈ 2 and κ ≈ 18, corresponding,
respectively, to no momentum dissipation at the edge, to dissipation
appropriate for neutral collisions only, and to dissipation produced
by the SOL with ne(a) ≈ 1.5 × 1019 m−3.

a simple linear approximation for jr , interpolating between
the values for Er = 0 and for the ambipolar value of Er .
The last term in equation (5) can then be written in the form
jrBθ ≈ −α(r)[vz − v0(r)], where v0 is the ambipolar value
of vz (i.e. the value that vz assumes when Er has its ambipolar
value). Equation (5) now assumes the linear form

ρ
dvz

dt
= 1

r

d

dr

(
µρr

dvz

dr

)
− α(r)[vz − v0(r)] (6)

and can be solved numerically in a straightforward manner.
Figure 6 shows numerical solutions for the steady-state

velocity profile for three different values of κ . The top
curve corresponds to κ = 0, giving the velocity profile in the
absence of momentum dissipation at the plasma edge. The
middle curve was obtained with κ ≈ 2, the lower bound
on momentum dissipation due to collisions with neutrals.
The bottom curve corresponds to κ ≈ 18, the estimate for
momentum dissipation in the SOL with the assumed value of
ne(a). Because the ripple magnitude increases rapidly towards
the plasma edge, the flow velocity profile is broad. As the
q profile evolves during startup, low order rational surfaces
entering from the plasma boundary are particularly vulnerable
to resonant magnetic perturbations. The broad velocity profile
in NCSX will provide relatively strong shielding for low order
rational surfaces near the plasma edge, and this will potentially
impact the options available for startup scenarios.

4. Viscous torque on rational surfaces

When a resonant magnetic field perturbation is imposed
on a rotating plasma, the resulting electromagnetic force
slows the plasma rotation at the rational surface. The
electromagnetic force is balanced by a viscous force exerted
by the neighbouring plasma on the rational surface, which
opposes the slowing of the plasma at the rational surface.
As the amplitude of the external perturbation is increased,
the electromagnetic force increases, and the rotation velocity
of the plasma at the rational surface decreases further. The
magnitude of the viscous force on the rational surface is
determined by the momentum diffusion equation.

Figure 7. Numerical solution of the momentum diffusion equation
for three different constraints at the rational surface, with κ = 2.
The top curve (——) is the unconstrained solution. The middle and
bottom curves correspond, respectively, to vs = vs0/2 and vs = 0.

Figure 8. Numerical solution of the momentum diffusion equation
for three different constraints at the rational surface, with κ = 18.
Again, the top curve (——) is the unconstrained solution, while the
middle and bottom curves correspond, respectively, to vs = vs0/2
and vs = 0.

In addition to the viscous force on the rational surface,
there is also a direct j × B torque exerted by the current
that arises from the nonambipolar transport. The total torque
exerted directly by the radial current is obtained by integrating
the torque density across the boundary layer at the rational
surface. For the case considered here, the viscous torque is
estimated to be much larger than the torque exerted directly
by jr .

We again consider the reference NCSX equilibrium whose
unperturbed velocity profile we discussed in the previous
section. The ι = 3

5 rational surface is of particular concern
because of its low order and because of its proximity to external
perturbations. (It is located at r/a ≈ 0.8.) The m = 5,
n = 3 island proved to be the island that was the most difficult
to suppress in the NCSX coil design process. We consider
here the resonant mode penetration at the ι = 0.6 rational
surface in the presence of the ambipolar flow. Assuming that
an externally generated m = 5, n = 3 perturbation slows the
rotation of the rational surface, we calculate the countervailing
viscous force. We solve the momentum diffusion equation for
this purpose.

The steady-state solution of equation (6) is obtained under
the assumption that the electromagnetic force has slowed the
rotation to a fraction of its ambipolar value. Denote the velocity
at the rational surface by vs, and the unperturbed velocity at the
rational surface by vs0. We consider the case where vs = vs0/2,
and the case where vs = 0. Figures 7 and 8 show, respectively,
the corresponding solutions of equation (6) for κ ≈ 2 and
κ ≈ 18. In each plot, the top curve corresponds to the solution
in the absence of an electromagnetic force, the middle curve
corresponds to the solution when the velocity at the ι = 0.6
rational surface is slowed to half its ambipolar value, and the
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bottom curve corresponds to the solution when the rotation at
the rational surface is entirely suppressed.

The viscous force exerted on the rational surface by the
plasma flow is given by 4π2rRρµ[dv/dr]+

−, where [dv/dr]+
−

is the jump in the radial derivative of the fluid velocity across
the associated boundary layer. For κ ≈ 2, we calculate
a[dv/dr]+

− ≈ 274 km s−1 and 540 km s−1, respectively, for
vs = vs0/2 and vs = 0. For κ ≈ 18 we calculate a[dv/dr]+

− ≈
238 km s−1 and 478 km s−1, respectively. Relative to v0, the
velocity on axis for the unconstrained velocity profile, we have
a[dv/dr]+

− ≈ 3.4v0 and 6.8 v0 for κ ≈ 2, a[dv/dr]+
− ≈ 3.5 v0

and 7.0 v0 for κ ≈ 18.
We consider a simple model to compare the viscous force

in a quasi-axisymmetric stellarator with that in a tokamak.
Fitzpatrick [18] writes

v = v(0) + v(1), (7)

where v(0) is the velocity profile in the absence of the resonant
perturbation, and he adopts the equation

ρ
dv(1)

z

dt
= 1

r

d

dr

(
µρr

dv(1)
z

dr

)
(8)

for the deviation of the toroidal velocity in a tokamak from its
unperturbed value. This is valid as long as the plasma flow is
driven by a momentum source which is independent of v. If
we substitute equation (7) into equation (6), we get

ρ
dv(1)

z

dt
= 1

r

d

dr

(
µρr

dv(1)
z

dr

)
− αv(1)

z . (9)

Relative to the tokamak, the stellarator has an additional
term −αv(1)

z on the right-hand side. To get some
insight into the effect of this term, we consider the
simple model where µρ and α are both assumed to be
independent of r . The steady-state solutions of equation (9)
are then the modified Bessel functions I0(

√
α/(µρ)r),

K0(
√

α/(µρ)r). For α � µρ, these solutions have
the asymptotic form (µρ/α)1/4 exp(

√
α/(µρ)r)/

√
2πr and

(µρ/α)1/4π1/2 exp(−√
α/(µρ)r)/

√
2r , so that the perturbed

velocity profile has a gradient scale length of (µρ/α)1/2. For
α → 0, we recover the tokamak limit, where the scale length
of the velocity gradient is comparable to r , so that the jump in
dv/dr is of the order of v/r . In a stellarator, the velocity
gradient is affected by the magnitude of the nonambipolar
j × B force, so that the gradient scale length can be shorter,
imparting greater stiffness to the flow velocity, and enhancing
the shielding effect.

5. Resonant mode penetration threshold

In mode penetration experiments on tokamaks where the
amplitude of the external perturbation is gradually ramped
up, it is found that the rational surface first slows to some
fraction of its initial rotation frequency, and then abruptly
ceases to rotate when the perturbation amplitude exceeds a
threshold value. The cessation of rotation is accompanied
by a complete penetration of the resonant perturbation at the
rational surface. This is consistent with the predictions of
theoretical calculations. The magnitudes of the viscous and

electromagnetic forces are functions of vs, and if vs > 0 it
must satisfy Fvisc(vs) = Fem(vs). There is predicted to be a
threshold in the perturbation amplitude above which Fem(vs)

exceeds Fvisc(vs) for 0 � vs � vs0, so that vs = 0 when the
perturbation amplitude exceeds this threshold.

The magnitude of Fem scales as the square of the resonant
perturbation amplitude, with the functional dependence of
Fem(vs) (i.e. the shape of Fem(vs)) independent of the
amplitude. Our numerical solution shows that Fvisc(vs) is well
approximated by a linear function of vs, as it is in a tokamak, so
that while its amplitude may be quite different, the functional
dependence on vs has not changed. It follows that there is again
a threshold value of the resonant perturbation amplitude above
which Fem dominates Fvisc, and that at the threshold value vs

is the same as in the tokamak. The resonant mode penetration
threshold scales as F

1/2
visc .

To estimate the magnitude of the flow-shielding effect
for magnetic islands in NCSX, we compare with a resonant
mode penetration experiment on DIII-D [4]. The DIII-D
reference case has been chosen to have similar parameters to
those in our NCSX reference equilibrium. It has 〈β〉 ≈ 3.7%,
〈ne〉 ≈ 5 × 1019m−3 and an ellipticity κ ≈ 1.8. Our reference
NCSX equilibrium has 〈β〉 = 4%, 〈ne〉 = 6 × 1019m−3 and
an average axisymmetric component of ellipticity of 1.8. The
magnetic field of both the DIII-D reference shot and the NCSX
reference case is 1.2 T. The rotation frequency of the rational
surface in the DIII-D reference shot is about 12 kHz. For the
NCSX case, the predicted rotation frequency ranges from about
9 kHz for κ ≈ 2 to about 7 kHz for κ ≈ 18. DIII-D has
R ≈ 1.67 m and R/〈a〉 ≈ 2.1, while NCSX has R ≈ 1.42 m
and R/〈a〉 ≈ 4.3. The experimentally observed penetration
threshold in the DIII-D reference case is Br21/B ≈ 4 × 10−4.

6. Discussion

The physics determining the penetration of a resonant magnetic
perturbation in a stellarator differs from that in a tokamak due
to the presence of a radial current produced by nonambipolar
transport. As the electromagnetic force produced by the
perturbation slows the rotation at the rational surface, the radial
current driven by the resulting nonambipolar transport exerts a
j × B force that resists departures from the ambipolar velocity
and enhances the shielding effect. The unperturbed velocity
profile is also modified in a stellarator. We have focused
here on a particularly interesting regime, corresponding to an
NCSX reference equilibrium, in which the configuration is
sufficiently close to quasi-symmetry that the viscous damping
in the toroidal direction is small, but the deviations from
quasi-symmetry are sufficiently large to produce a substantial
ambipolar flow, and a substantial modification of the flow-
shielding effect. Because the ripple magnitude increases
rapidly towards the plasma edge, the flow velocity profile is
broad. The strong shielding for low order rational surfaces near
the plasma edge will have potential implications for startup
scenarios.

A reference DIII-D shot with parameters similar to those
of our reference NCSX equilibrium has been reported to have a
penetration threshold of Br21/B ≈ 4 × 10−4 [4]. Calculations
with the PIES code found that the resonant m = 5, n = 3
field component associated with an initial NCSX coil design
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algorithm that did not explicitly target resonant field error
reduction was Brnm/B ≈ 1.3 × 10−3. This is likely above
the penetration threshold, even including the enhancement
of the shielding due to nonambipolarity, and a further coil
optimization using the PIES code to reduce the magnitude
of the resonant field components was a prudent step in the
coil design process.

To the extent that the plasma flow shields out residual
resonant magnetic field components at rational surfaces, it
will further improve the flexibility of the NCSX device, and
it will further reduce the vulnerability of the NCSX device to
field errors.

The flexibility of the nonaxisymmetric NCSX device will
potentially allow a variety of experiments to clarify the physics
of the shielding of resonant magnetic perturbations by plasma
flow. Control over the magnitude of the non-quasi-symmetric
ripple will provide a knob for adjusting the magnitude of the
nonambipolar current and the toroidal flow damping. More-
over, the thermal diffusivities are dominated by the contribu-
tions from anomalous and axisymmetric neoclassical transport,
so they will not be significantly affected by modest changes of
the effective helical ripple. The externally generated rotational
transform will allow control over the q profile independent of
the current profile. Simultaneous adjustment of the neutral
beam power and the ohmic current drive will allow adjustment
of the rotation frequency with a fixed current profile. Two sets
of trim coils will provide control over the resonant compo-
nents of the magnetic field. Comparison of the experiments
with theoretical predictions will provide a new perspective on
the physics of the shielding, and will contribute towards the
goal of being able to reliably predict field-error penetration
thresholds in tokamaks and stellarators.
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